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Abstract 

Our research investigates how observations can be catego- 
rized by integrating a qualitative physical model with ex- 
periential knowledge. Our domain is diagnosis of patho- 
logic gait in humans, i n  which the observations are the gait 
motions, muscle activity during gait, and physical exam 
data, and the diagnostic hypotheses are the potential muscle 
weaknesses, muscle mistimings, and joint restrictions. Pa- 
tients with underlying neurological disorders typically have 
several malfunctions. Among the problems that need to 
be faced are: the ambiguity of the observations, the ambi- 
guity of the qualitative physical model, correspondence of 
the observations and hypotheses to the qualitative physi- 
cal model, the inherent uncertainty of experiential knowl- 
edge, and the combinatorics involved in forming compos- 
ite hypotheses. Our system divides the work so that the 
knowledge-based reasoning suggests which hypotheses ap- 
pear more likely than others, the qualitative physical model 
is used to determine which hypotheses explain which obser- 
vations, and another process combines these functionalities 
to construct a composite hypothesis based on explanatory 
power and plausibility. We speculate that the reasoning ar- 
chitecture of our system is generally applicable to complex 
domains in which a less-than-perfect physical model and 
less-than-perfect experiential knowledge need to be com- 
bined to perform diagnosis. 

The Promise of Deep Knowledge 

niodel within the knowledge-based system, according to the 
following presumptions. 

1. Let hf  be the physical model which describes the do- 
main when everything is functioning as it should. 

2. Let M be the set of all physical models consistent 
I f  Ad @ M ,  then there is a with the observations. 

malfunction. 

3. If there is a malfunction, then for each AT‘ t M ,  the 
differences between izf’ and Af is a possible diagnosis. 

That is, the normal physical model is selectively changed 
until it predicts (or is compatible with) the aberrant obser- 
vations. Each change corresponds to an abnormality or mal- 
function. For example, in de Kleer and Williams’ method 
for diagnosis, such a change consists of suspending the con- 
straints of a component in the model, i.e., the outputs of 
a malfunctioning component are considered to be uncon- 
strained. Each set of changes that accounts for the obser- 
vations is considered a possible diagnosis. The process of 
diagnosis is a search for each such set of changes. 

An example might clarify the intended role of physical 
models. Consider the device in Figure 1, by now a familiar 
example in the literature. Mult-1, Mult-2, and Mult-3 are 
three multipliers, with A-E as their inputs and X-2 as their 
outputs. Add-1 and Add-2 are adders with X-2 as inputs 
and F and G as outputs. Given specific inputs to this de- 

Recently in knowledge-based systems research, there has 
been an emphasis on “deep” knowledge over “shallow” 
knowledge. Deep knowledge is based on the causal mech- 
anisms underlying the domain, typically obtained through 
scientific studies and incorporated into physical models of 
the domain, while shallow knowledge is based on experi- 
ential knowledge, typically obtained from human experts 
and incorporated in rule-based systems [4]. The promise of 
deep knowledge is that the conclusions of a knowledge-based 
system be inferred from an accurate physical model of the 
domain, rather than dependent on a time-consuming and 
error-prone knowledge engineering effort. 

The emphasis on deep knowledge has influenced re- 
search on diagnosis [9, 191. In this line of research, the 
process of diagnosis is reduced to manipulating the physical 

- 
Figure 1: Multiplier and Adder Example 
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Difficulties in Fulfilling the Promise 

We have been studying diagnosis in the  doniain of human 
pathologic gait (walking disorders) 113, 181. In this domain ,  
t h e  goal of diagnosis is to  de te rmine  the  muscular and  skele- 
tal causes of t he  pat ient’s  abnornial gait motions.  Exam- 
ples of malfunctions include reduced ranges of motion of 
joints  (contractures) ,  joint  pain,  muscle weakness, and  mus-  
cle spasticity.  Typically, pat ients  will have a known under- 
lying disorder such cerebral  palsy or ar thr i t is ,  which gives 
rise to  t h e  joint  and  muscle malfunctions.  Diagnosing joint  
and  muscle malfunctions is done t o  help determine what  
kind of t r ea tmen t s  (e.g. ,  physical therapy ,  braces, surgery 
on joints  and  muscles) will best  correct t h e  patient’s gait.  

T h e  d a t a  is primarily of t he  following types:  history, 
physical e x a m ,  and  motion d a t a .  T h e  pat ient’s  history in- 
cludes information about  pas t  a n d  present diagnoses and  
t r ea tmen t s  and  demographic  d a t a .  T h e  physical exaniina- 
tion provides d a t a  about  t h e  range of motion of joints and  
s t rength  of muscles. T h e  motion d a t a  include the  gait mo- 
tions of t h e  patient obtained through a special camera sys- 
t em.  This  measures  joint  angles, gait  velocity, str ide length,  
e tc .  Also, E M G  measurements  a re  taken while the patient 
is walking, which provides d a t a  on muscle activity. 

Since h u m a n  walking is subjec t  to  the  laws of Physics, 
just  as any  o ther  physical activity, it appears  t ha t  deep- 
knowledge-diagnosis would be  appropriate .  Unfortunately,  
there  are  several difficulties in doing diagnosis based on 
physical models. 

1. Construction. Domain models with sufficient predic- 
t ive and  explanatory power need to  be  constructed by- 
fore deep-knowledge-diagnosis can proceed. However, 
quant i ta t ive modeling of h u m a n  gait is stlll a challeng- 
ing research topic [12]. This  is not just  a problem in 
our domain .  More often than  no t ,  simulation of com- 
plex mechanical devices a n d  biological processes are  
o p e n  research problems. 

2 .  Ambiguity. Even if a domain model can  he  con- 
s t ructed,  there  is a problem of obtaining sufficiently 
detailed d a t a  for t he  donlain model. If a quan t i t a t ive  
simulation is to  be performed, then  precise measure- 
nients of t he  initial s t a t e  and input  parameters  need 
to be obtained.  I n  many domains,  this presents no 
difficulties. For example,  electronic circuits a r e  suffi- 
ciently constrained and  well-understood so t h a t  care- 

3. 

fully selected meiisiirenients can give the  s t a t e  of t he  
device. Unfortunately in gait analysis, many  internal  
gait parameters cn.iinot be directly or even indirrctly 
measured by cu r r rn t  technology. e.g., EhlG d a t a  is a 
best a qualitative measure of muscle forces [2O].  Gen- 
erally in  medical domains,  iiiany internal parameters  
cannot be accuratrly measured without overly invasive 
actions 

One answer to this problem (and  par t  of our own 
solution) is t he  use of quali tative physical models 
[ l ,  8 ,  10, 151. Such models still provide explana tory  
power in spite of ambiguous da t a .  However, quali ta- 
t ive models in t roduce  their own sources of ambiguity.  
As a rule, quali tative simulation does not predict  a 
single sequence of s ta tes ,  but produces several  alter- 
native s t a t e  sequences. Additional information is re- 
quired to  disambiguate between them [ 7 ] .  Also, qual- 
i ta t ive simulation might  produce s t a t e  sequences t h a t  
are  spurious [Itj]. 

Computational complezity. Diagnosis is inherently 
cornpictationally complex. The number  of possible di- 
agnoses is conibinatorially large. If n different mal- 
functions can occur ,  then  there  are 2“ possible sets of 
nialfunctions. If each malfunctions can be caused in rn 
different ways, then  there  are  2”’” possibilities. This 
large hypothesis space is not j u s t  an  abstract  possibil- 
ity. In pathologic gait, patients with underlying neu- 
rological disorders typically have several malfunctions,  
some of which are  “pr imary”  (due  to  t h e  underlying 
disorder),  while others  are  a t t e m p t e d  compensations.  

Clearly, there is a need t o  modify t h e  assumption t h a t  
physical models for performing efficient and  accura te  diag- 
nosis can be readily constructed in all domains.  A more rea- 
sonable assumption is tha t  physical models can perform spe- 
cific diagnostic subtasks. Experiential  knowledge acquired 
from human exper t s  is still needed to  help guide t h e  search 
through the hypothesis space.  

The Subtasks That Physical Mod- 
els and Experiential Knowledge 
Are Good For 

T h e  next question is t o  identify the  respective roles t ha t  
physical models and  experiential  knowledge can  play. Un- 
fortunately,  many factors a re  domain-dependent ,  and  no 
“task model” is sufficiently developed to  clearly answer this 
question (see [3 ,  5, 171 for what  has been developed).  Our 
own experience ( t h e  next best thing) is the following. 

As mentioned earlier, deep knowledge is usually associ- 
a ted  with physical models, which a re  in tended  t o  have pre- 
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dictive arid explanatory power. A physical model of patho- 
logic gait needs to represent at  least the muscles, the limb 
segments. and t,he interactions among them. Given a partic- 
ular situation (joint positions, limb and trunk momentums, 
muscle and ground forces), it ideally shoiild predict changes 
i n  position and inoinentuni. A major difficulty is obtain- 
ing accurate dn.ta on muscle forcrs. A s  a coI1sequence, w e  
will rely o n  a qualitatzve physical niodrl, based on knowl- 
edge about the motions that miiscles control and on rdative 
strengths of niuscles. For example, the action of  a muscle 
on a joint might be described as “caiises flexion” as opposed 
to a diffrrential equation. Such models have weak predic- 
tive capabilities. I n  our domain, we will at best be able to 
explain how a motion could be caused by a conibinations 
of factors, but tlie anihiguity concerning the exact amount 
of force associated with each factor precludes even qualita- 
tively accurate predictions. 

Another difficulty is using the physical model to search 
for diagnostic hypotheses. Because the interactions of tlie 
components (muscles and limb segments) are highly coni- 
plex (unlike the device of Figure I ) ,  a particular motion 
could be caused i n  a large number of ways, especially when 
combinations of malfunctions are considered. Also, tlie ef- 
fect of any single malfunction can propagate throughout the 
rest of the system. A sprained ankle, for instance, affects 
the whole gait, not just the motion of the ankle. A phys- 
ical model then might be able to suggest local, indiziidual 
causes for a particular abnormal motion, but searching for 
all possible causes for each abnormal motion and generating 
composite hypotheses based on jus t  this information will be 
computationally prohibitive. 

Can experiential knowledge be used for the diagnos- 
tic reasoning that is difficult to do with physical models? 
As is typical in knowledge-based systems, experience can 
provide rules that associate abnormal observations with the 
malfunctions that typically cause them. Hence, experiential 
knowledge can give valuable clues concerning what malfunc- 
tions should be considered. Such knowledge, though, is not 
very good for determining whether a hypothesized malfunc- 
tion accounts for the observations in a particular case, and 
is no good for considering combinations of interacting mal- 
functions. 

Thus,  we can usually use (qualitative) physical models 
to suggest some of the possible causes of an observation and 
to determine what observations a hypothesis accounts for 
(explanatory coverage). Experiential knowledge can asso- 
ciate hypotheses with observations and suggest which hy- 
potheses appear more likely than others. In general, rea- 
soning based on experiential knowledge is good for generat- 
ing individual malfunctions that appear likely, while niodel- 
based reasoning is best for testing explanatory coverage of 
malfunctions and combinations thereof. Figure 2 summa- 
rizes these conclusions. 

Integrating Model-Based Reason- 
ing with Experiential Reasoning 

These considerations lead us to the following proposal based 
on using hypothesis assembly [ 141 to integrate model-based 

.. 
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Experiential Reasoning 1 Model-Based Reasoning 

generate: nialfunctions 
associated with 
observations 

test: likelihood of 
malfunctions 

good for: generating 
individual 
nialfunctions 

generate: malfunctions 
that cause 
observations 

test: explanatory 
coverage of 
malfunctions 

conibinations 
of nialfunctions 

good for: testing 

Figure 2: Experiential vs. blodel-Based Reasoning 

reasoning with experiential reasoning. Hypothesis assembly 
is a general technique for constructing and critiquing com- 
posite hypotheses. It requests inforniation via the following 
domain-dependent functions: 

1. a function that rates the “plausibility” of a hypothe- 
sis. The likelihood of malfunctions as determined by 
experiential reasoning can be used to rate plausibility. 
Explanatory coverage can be used to break ties (i.e., 
when the likelihoods of two malfunctions are too close 
for meaningful comparison). 

2. a function that rates the importance of observations. 
I n  pathologic gait, the amount of the difference be- 
twepii abnormal and normal for a particular motion 
parameter determines its importance. 

3. a function that determines what hypotheses can ex- 
plain an observation. The qualitative physical model 
can be used to suggest hypotheses that explain an ob- 
servation. 

4. a function that determines what observations a (com- 
posite) hypothesis does and does not explain. The 
qualitative physical model can be used to determine 
what observations are explained by a combination of 
malfunctions. 

The subtasks that experiential knowledge and physical mod- 
els are good for fit into hypothesis assembly quite well. 

Hypothesis assembly uses this information to construct 
a composite hypothesis with the following properties: 

The composite hypothesis explains as many obser- 
vations as possible in comparison with similar com- 
posite hypotheses. That is, no local change (addi- 
tion/deletion of some part to/from the composite hy- 
pothesis) improves explanatory coverage. 

Each hypothesis part within the composite hypothesis 
is as plausible as possible, viz. in comparison to other 
hypothesis parts explaining some particular observa- 
tion. 

The composite hypothesis is parsimonious, i.e., no hy- 
pothesis in the composite hypothesis is superfluous. 



( A  hypothesis within a composi te  hypothesis is super- 
fluous if it can be removed without loss of explaiiatory 
coverage. ) 

Hypothesis assembly also cri t iques this composi te  hypotlie- 
sis i n  comparison to  o ther  composite hypotheses.  Thus, one 
composite hypothesis is selected and  its goodness I n  coni- 
parison to o ther  hypotheses is de te rmined .  

Hypothesis assembly, however, is not guaranterd  to  find 
the “correct” hypotheses.  Given the  difficulties in  decp- 
knowledge-diagnosis discussed earlier, no method caii be 
expected to  guarantee  t ru th .  Nor is hypothesis asseinhly 
guaranteed t o  produce the  “best”  hypotheses according to 
normative criteria such as “most probable hypothesis t,ltat 
accounts for all t he  observations.” Srich criteria are com- 
putatioiially intractable  [;?I. We conjecture tha t  Iiyputll&s 
assembly is t he  best t ha t  can be done within the constraints 
of imperfect physical models and  computat ional  tractability. 

Conclusion 

It  has been proposed tha t  diagnosis should be based on  
physical models of t h e  domain.  However, several factors 
make it unlikely tha t  diagnosis can be  ju s t  be  based 011 phys- 
ical models. These  factors include constructing a sufficiently 
powerful physical model, obtaining sufficiently accura te  ob- 
servations,  and  performing diagnosis efficiently. Diagnosis 
in the domain of h u m a n  pathologic gait  illustrates these 
problems. Our proposal is to  integrate  quali tative physical 
models with experiential  knowledge so tha t  both sources 
of information will be  efficiently and  effectively utilized. In 
particular,  they  can be  integrated using t h e  technique of hy- 
pothesis assembly, which constructs a composi te  diagnostic 
hypotheses with several desirable properties:  explanatory 
power, plausibility, and  parsimony. We speculate t ha t  t he  
reasoning archi tecture  of our system is generally applicable 
to  complex domains in which a less-than-perfect physical 
model and  less-than-perfect experiential  knowledge need to  
be  combined to perform diagnosis. 
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